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Quick Contents
• USQCD Software Layers
- Pros and Cons

• Bespoke Performance Libraries

• Extreme Metaprogramming
- QDP-JIT for CPUs and GPUs

- Grid

- QEX 

• Very recent Kokkos experience

• Lessons Learned
This is a review-like talk, I didn’t do all the work. All mistakes/errors 

etc. about work of others are mine. 
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USQCD SciDAC Layered Software
• Layered 

approach

• Performance 
libraries - tied to 
architecture

• Data parallel 
frameworks for 
productivity

• Wrap MPI etc.

CPS MILC QLUAFUELChroma

QUDA BAGEL QOP-MG QPhiXMDWF

QDP++ QDP/C QIO

QMP QLAQMT

Pthreads MPI/SPI/MVIA.. System Side

Application Suites

Level 3: Domain 
Performance Libs.

Level 2: Data parallel 
frameworks and IO

Level 1: Comms & 
Threading abstractions
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Pros and Cons
• “Performant Capability Portability”

- but only as long as capability is provided in Level 3 
libraries for all architectures of interest

- Libraries often compete, features not always in sync

• Good reuse of libraries between applications 
(e.g. QUDA) 

• Has been ‘very portable’
- QCDOC, Cray XT, XE and BlueGene systems, Xeon 

Clusters

• Level 2 data layouts have not been flexible, and 
have typically been AOS. Difficult to vectorize
- libraries require data import/export, need to be 

sufficiently granular to amortize this

- ‘native’ level 2 code, can become Amdahl’s law 
bottleneck

CPS MILC QLUAFUELChroma

QUDA BAGEL QOP-MG QPhiXMDWF

QDP++ QDP/C QIO

QMP QLAQMT

Pthreads MPI/SPI/MVIA.. System Side
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Domain Specific Performance Libraries
• Great way to learn about the architectures

• QUDA for GPUs:
- vital importance of data layout

- use of mixed precisions 

- use of compression

- use scalable methods!

- CUDA C++ based.

• Bagel and QPhiX libraries for multicore CPUs
- AOS/SOA/AOSOA layouts 

- cache-blocking approaches 

- load-balancing / prefetching

- Intrinsics + OpenMP/pthreads based (QPhiX), assembler 
(BAGEL)

• Very suitable for ‘simple’ solvers (CG & BiCGStab)

• Complicated solvers (e.g. multilevel AMG) painful
- need to refactor library into a framework: e.g. QUDA

12
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Vcycle Preconditioner:
- multiple solvers,
- indexing multiple lattices
- different operators

- fine, fine DD?
- coarse, course DD?

- change layout per level?
- where do grids live?
- where do levels execute?

- CPU or GPU?
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Extreme Metaprogramming I: QDP-JIT
• QDP-JIT

- Subvert PETE expression templates in QDP++ to produce Just 
In Time Code Generators

- Produce PTX (initially) or LLVM-IR (now)

- Use LLVM optimization passes

- Use LLVM back end to target hardware

• Drop in replacement for QDP++
- Deploy all of Chroma on GPUs as well as CPUs

• Divorce data layout from QDP++ data structures
- different (good) layouts on GPU & CPU

• Treat GPU memory as LRU cache 
- Cache management via CUDA for GPU

- Could generalize to other Slow/Fast memory combinations.

•  Downsides: 
- JIT Overhead: no problem for long duration jobs

- Dependent on LLVM and PTX versions potentially

- Maintainance/extension needs LLVM expertise

CPS MILC QLUAFUELChroma

QUDA BAGEL QOP-MG QPhiXMDWF

QDP-JIT QDP/C QIO

QMP QLAQMT

MPI System SideCUDA driver

PTX
libnvvmBG/Q QPX x86 AVX

LLVM-JIT
LLVM-IR

OS  + Hardware 
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Extreme Metaprogramming II: Grid
• Recent development from University of Edinburgh (P. Boyle) 

- Address performance concerns of native (non-JIT) QDP++

- Add multi-level features

- Emphasis on Data Layout

- Use virtual node idea from Connection Machine days

- Solve problem of ‘vectorization’, can work for GPU Warps too.

• Uses C++-11 features for metaprogramming
- decltype, constexpr etc.

- smaller code than PETE

- multi-resoluton  ideas (generic forall)

- comms optimization (e.g. stencil concept)

• Performance is key
- “Designed to ONLY use and propagate vector intrinsics globally throughout data parallel 

code: wrapped in high level operators and each defined precisely once in a single short 
(400LoC) file making porting exceedingly easy”

• Not yet portable to GPUs
- Future goal: using evolutions of OpenMP offload/OpenACC

- Combining directives with metaprogramming can be tricky: R&D topic

• See: https://github.com/paboyle/Grid for code, and also Peter Boyle’s slides from 
IXPUG: [Here] . Look for 06-Boyle-IXPUG.pdf

Vector Unit of Length N
log2N dimensional
virtual node grid

Lay-out lattice over 
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

https://github.com/paboyle/Grid
https://drive.google.com/folderview?id=0B9kBqCR08pIoc0xzWDBJSG5IeWs&usp=sharing
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Extreme Metaprogramming III: QEX
• QEX Project: James Osborn, ALCF, using the Nim language 

• Nim (formerly Nimrod) is a very high level language (http://nim-lang.org)
- generates C/C++, which can then be compiled 

• allows easy integration with C/C++

• can produce #pragma’s in the C-code (OpenMP/OpenACC) intrinsics (SIMD)

• can interface with C-like languages (CUDA/OpenCL)

- two levels of metaprogramming

• use as flexible C/C++ code generator

• high level AST transformations on any Nim code

- strongly typed

- modules: no more arbitraty .h/.cc distinction

- reflection/introspection: automatic (de)serialization

- script-like: instead of scripting your executable, have your script be the executable

• no need to integrate scripting/input language 

• Comments:
- relatively young language

- would require some infrastructure work (e.g. wrap MPI — Nim provides automatic wrapping tool)

- very promising initial exploration work

• See http://www.mcs.anl.gov/~osborn/scidac/qex.pdf for details

• QEX code available on GitHub: https://github.com/jcosborn/qex 
9

QEX/Nim examples

● threads: implementation

template threads*(body:untyped):untyped =
  let tidOld = tid
  let nidOld = nid
  proc tproc =
    {.emit:"#pragma omp parallel".}
    block:
      setupForeignThreadGc()
      tid = ompGetThreadNum()
      nid = ompGetNumThreads()
      body
  tproc()
  tid = tidOld
  nid = nidOld

From J. Osborn’s slides: Example Lattice  (client) Code

8

QEX: QCD (or Quantum) Expressions

import qex
import qcdTypes

qexInit()
var lat = [4,4,4,4]
var lo = newLayout(lat)
var v1 = lo.ColorVector()
var v2 = lo.ColorVector()
var m1 = lo.ColorMatrix()
threads:
  m1 := 1
  v1 := 2
  v2 := m1 * v1
  shift(v1, dir=3, len=1, v2)  # len=+1: from forward
  single:
    if myRank==0:
      echo v2[0][0]  # vector “site” 0, color 0
qexFinalize()

Construct Domain Specific 
Objects 

Matrix x Vector
Nearest Neighbors

Emit Compiler #pragma

From J. Osborn’s slides: Metaprogramming example

http://nim-lang.org
https://github.com/jcosborn/qex
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Kokkos Experiments
• Kokkos is a programming model for performance portability 

written in C++
- many back ends: OpenMP, CUDA, qthreads etc.

• Aesthetically very appealing abstraction of hardware 
features, and implementation of parallel patterns.

• Initial experiment with a lattice QCD Kernel:  yi= D xi  for 
i=0..15
- compare Kokkos implementation with a straight C/C++ version. (S. 

Khan, ODU)

- Initial performance low (no vectorization)

- Interaction with Kokkos team (C. Trott) improved performance to 
over 80% of hand written C++ code

• Big Thanks to Christian Trott from the Kokkos team for 
optimizing this so promptly!!!

• More work to be done here, hopefully future collaboration 
with Kokkos team.

• Kokkos is on GitHub: https://github.com/kokkos
- also, further talks at this workshop: C. Trott, S. Hammond, & others
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This is not the end, but the beginning (custom layouts etc still to come)

https://github.com/kokkos
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Lessons Learned/Takeaways
• Bespoke High Performance Libraries are extremely valuable but also a real pain

- High performance, but tied to architecture

- Low level code, using intrinsics/assembly.

- Frequently generated by code-generators

- Complicated algorithms (more complex solvers, force terms) are difficult to implement

• turn ‘library’ into a ‘framework’ from the bottom-up

- Feature compatibility often lags between libraries

- Difficult to maintain

- Low developer productivity

• Would really like the productive Level 2 frameworks to provide features and performance to 
remove the need for bespoke libraries
- performance portability through the performance portability of the framework

- but potentially decreased reuse for codes using different frameworks (framework dependence)
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Lessons Learned/Takeaway: II
• Data layout flexibility and mixed precision algorithms are crucial, especially for memory bandwidth bound problems

• In order to provide ‘expression’ syntax for users, and in order to deal with GPUs as well as CPUs - we had to do to some 
form of metaprogramming
- PETE - for QDP++ & QDP-JIT;  C++11 improvements for Grid

- Kokkos uses a lot of metaprogramming under the hood

- Mixing compile time constructs, with runtime constructs can get very messy.

• e.g. runtime selection of templated objects

• Nims offers nice features (modules, reflection, scripting etc) and can be used as a high level code-generator for C/C++. 

• We’ve not made much use of directives for accelerators so far
- QUDA library used CUDA since beginning

- QDP-JIT works at the PTX/LLVM-IR level (depending on implementation) 

- There may be issues using acceleration directives with recursive expression templates.

- Frameworks should hide this feature from the user.

• Essential to have clean builds, unit tests etc
- Code is complex (Expression Templates, Low level codes etc), Testing is important. We should always strive to improve software 

engineering  practices.
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